
phpaga Documentation
Release 0.6-beta3

Florian Lanthaler

December 23, 2010

CONTENTS

1 Installation 3
1.1 Requirements . 3
1.2 Installation . 4
1.3 Configuration . 5
1.4 Development version . 6

2 Upgrade 9
2.1 In general . 9
2.2 Upgrading from 0.5.2 to 0.6 . 9
2.3 Upgrading from 0.5.1 to 0.5.2 . 10
2.4 Upgrading from 0.5 to 0.5.1 . 10
2.5 Upgrading from 0.4 to 0.5 . 11
2.6 Upgrading from 0.3 to 0.4 . 11
2.7 Upgrading from 0.2 to 0.3 . 13
2.8 Upgrading from 0.2rc1 to 0.2 . 13
2.9 Upgrading from earlier versions . 14

3 PDF customization 17
3.1 Invoices . 17
3.2 Quotations . 17
3.3 Sitewide settings . 17

4 Billing plugins 19
4.1 Mini HOWTO . 19
4.2 Sample implementation . 20

5 Getting Started Guide 23
5.1 Introduction . 23
5.2 Features . 23
5.3 Quickstart . 24
5.4 Understanding the workflow . 26
5.5 Understanding the reports . 27
5.6 Settings and customizing . 28
5.7 Miscellaneous items . 29

6 Changes 31
6.1 phpaga dev . 31
6.2 phpaga 0.5.1 . 32
6.3 phpaga 0.5 . 32
6.4 phpaga 0.4 . 33
6.5 phpaga 0.3a . 34
6.6 phpaga 0.3 . 35
6.7 phpaga 0.2 . 37

i

7 Appendix 39
7.1 Bugs . 39
7.2 Contact . 39

ii

phpaga Documentation, Release 0.6-beta3

Contents:

CONTENTS 1

phpaga Documentation, Release 0.6-beta3

2 CONTENTS

CHAPTER

ONE

INSTALLATION

Installing phpaga is not a fully automated process, there are a few simple steps that you must go through. If you
are upgrading from a previous version you might be interested in the chapter Upgrade.

For a fresh install you need to do the following steps:

• Copy phpaga files to the destination folder(s).

• Install the requirements.

• Create a database and grant the necessary rights to the phpaga user.

• Set some base configuration parameters.

• Point your browser to phpaga - an installer will create the necessary tables and populate them with the core
data.

This document will guide you through the installation and give you some help. If you don’t know how to install
PHP or how to compile it with support for the packages listed under “requirements”, then refer to the PHP website
and the official PHP Documentation.

1.1 Requirements

The following software packages have to be installed on your server in order to use phpaga. The version numbers
mentioned below are known to work. Refer to each package’s website for installation instructions.

1.1.1 RDBMS

Currently PostgreSQL (>= 7.4) and MySQL (>= 4.1.16) are supported. If you are unsure about which to pick go
for PostgreSQL - phpaga is developed and tested under PostgreSQL, and database-related parts are better tested
with that platform.

1.1.2 Web server

phpaga should work with any PHP-enabled web server. The development environment is running nginx with PHP
as FastCGI. phpaga has also been tested with Apache.

1.1.3 PHP with PDO

>= 5.2.0

PHP with support for PDO and the PDO driver(s) for PostgreSQL (or MySQL), gettext and gd. Visit
http://www.php.net/ for more information on how to compile and install PHP, and http://www.php.net/gettext
for information about PHP’s gettext support. For the various supported languages to actually work, make sure you

3

http://www.php.net/
http://www.php.net/docs.php
http://www.postgresql.org/
http://www.mysql.com/
http://nginx.org/
http://httpd.apache.org/
http://www.php.net/
http://www.php.net/gettext

phpaga Documentation, Release 0.6-beta3

have the corresponding locales installed. Keep in mind that after installing a new locale you will need to restart
the web server.

The php.ini settings register_globals and magic_quotes_gpc can both be Off. In case
magic_quotes_gpc is On all escaping slashes in $_REQUEST, $_GET and $_POST will automatically be
removed by phpaga.

The amount of memory available to PHP is defined by the memory_limit setting in php.ini. This value defaults
to 8M, but you might need to raise it to 16M or 32M if you encounter error messages like the following:

"Fatal error: Allowed memory size of 8388608 bytes exhausted (tried to
allocate 65211 bytes) in <some filename> on line <some line number>".

etc/config.local.php also provides the possibility to change this setting.

1.1.4 Graphviz

This package is optional. If you would like to see project relationship graphs you will need to install Graphviz and
set the related option “Enable Graphviz” under the sitewide configuration to “Yes”. Note that phpaga will work
nicely without this package (provided you set the option “Enable Graphviz” to “No”) - you will just be missing
the relationship graphs.

1.1.5 ImageMagick

ImageMagick‘s convert is used to create preview thumbnails for uploaded files.

1.2 Installation

1.2.1 Installation layout

Only phpaga’s htdocs/ directory needs to be read by the web server. All other directories can and should
be outside the web server’s document root. This can be achieved either by creating a virtual host and have its
document root point to the full path to htdocs/, or by installing phpaga completely outside the document root
of an existing website and then adding an alias to the web server’s configuration. This can be done under Apache
with the following example:

Alias /phpaga /usr/local/phpaga/htdocs/

If you can’t modify the web server’s settings (for example because you are using the services of a webhosting
company) you should use the following strategy:

Say your home directory is /home/exampleuser, and all your website content is
stored under /home/exampleuser/www/, and you have unpacked the phpaga files to
/home/exampleuser/phpaga/. Do this:

mv /home/exampleuser/phpaga/htdocs/* /home/exampleuser/www/
mv /home/exampleuser/phpaga/htdocs/.htaccess /home/exampleuser/www/

edit /home/exampleuser/www/config.php to point to /home/exampleuser/phpaga/etc/config.php,
i.e.

require_once ’../phpaga/etc/config.php’;

If you want the phpaga setup to be accessible using a subfolder of your domain, i.e. www.example.com/phpaga,
then do this instead:

mv /home/exampleuser/phpaga/htdocs /home/exampleuser/www/phpaga

4 Chapter 1. Installation

http://www.graphviz.org/
http://www.imagemagick.org/

phpaga Documentation, Release 0.6-beta3

edit /home/exampleuser/www/phpaga/config.php to point to /home/exampleuser/phpaga/etc/config.php,
i.e.

require_once ’../../phpaga/etc/config.php’;

1.2.2 The database

Create a database and a database user with the necessary permissions and set the appropriate configuration settings
in the file etc/config.local.php accordingly. Make sure the database is able to hold unicode/utf-8. We
will name both the database and the user “phpaga” in the examples provided below.

If you are using phpaga with a webhosting provider, chances are that the provider will create the database for you
and give you the credentials.

If you are upgrading from a previous version of phpaga refer to the section Upgrade. For information about
converting from MySQL to PostgreSQL read the section Migrating phpaga from MySql to PostgreSQL.

For PostgreSQL

Note: If you are using PostgreSQL 8.x, use ‘UTF8’ as the encoding of the database. For PostgreSQL 7.x, use the
encoding ‘UNICODE’.

psql template1
template1> create database phpaga with encoding ’UTF8’;
template1> create user phpaga password ’yourpasswd’;
template1> grant all on database phpaga to phpaga;

Depending on your setup, you may also need to modify pg_hba.conf. This file is part of PostgreSQL and
controls which hosts are allowed to connect, how clients are authenticated, which PostgreSQL user names they
can use, which databases they can access. Refer to the PostgreSQL documentation if you are unsure about the
proper settings.

For MySQL

Note: In order to work with database transactions, the InnoDB Storage Engine is used. To determine whether your
server supports InnoDB use the SHOW ENGINES statement.

mysql -uroot -p mysql
mysql> create database phpaga default character set utf8 collate utf8_general_ci;
mysql> grant all on phpaga.* to phpaga@localhost identified by ’yourpasswd’;
mysql> flush privileges;

1.3 Configuration

Fire up your browser of choice and point it to the right URL. A simple wizard will guide you and help you to
create the database structure, populate it with core data, and create the first user.

1.3. Configuration 5

phpaga Documentation, Release 0.6-beta3

Insert the data as required and submit the form. The user will be created with all available permissions, and you
are invited to log in.

In case you have any problems accessing phpaga, try to open test.php in your browser and check its output for
helpful information.

PLEASE NOTE: If you can log in and everything is running smoothly, remove htdocs/test.php (or chmod
it so that the webserver does not have access to it) - it might expose critical information.

Once you are logged in you can configure the default settings by selecting “Sitewide settings” from the admin
menu.

From there you have the option to manage your categorie sections (task/project/job and other categories) from the
admin menu, before you (or your users) start to add tasks.

1.4 Development version

The following information is not needed if you install phpaga from an official (release) package.

If you fetched the source directly from phpaga’s subversion repository you will need to install a few extra libraries
(they come already bundled with official phpaga packages) and perform some additional installation steps.

6 Chapter 1. Installation

phpaga Documentation, Release 0.6-beta3

1.4.1 Additional requirements

Smarty

3.0.5 or later

phpaga uses Smarty as its templating engine.

TCPDF

5.9.0.29 or later

TCPDF is a PHP class that allows the easy creation of PDF files.

1.4.2 Additional installation steps

If you fetched the source directly from phpaga’s subversion repository you will need to perform the following
steps. If you are installing an official package you can skip this section.

• Use the sample file etc/config.local.php_sample to create etc/config.local.php and fill
in the necessary parameters.

• Give the web server full permissions to the files/ directory. This directory will contain the files users
can upload and associate to objects (project, person, company, ...).

chown www-data files/
chmod 0700 files/

• If you do not have administrative rights on the server and therefore cannot change the directory’s ownership,
simply chmod 0777 the directory.

chmod 0777 files/

• Make sure your phpaga directory contains a templates_c directory which the web server can write into. If
you have root access:

cd /data/webs/phpaga/
mkdir -p templates_c
chown www-data templates_c
chmod 700 templates_c

or, if you are using shared hosting:

cd /home/exampleuser/phpaga/
mkdir -p templates_c
chmod 777 templates_c

• Install required 3rd party packages

– If you have Smarty already installed on your server you can use it by editing the definition of
SMARTY_DIR in etc/config.local.php accordingly.

define("SMARTY_DIR", "/some/other/path/to/smarty/libs/");

Otherwise install Smarty into ext/ (no need to change etc/config.local.php).

[cd phpaga/ext]
tar zxf Smarty-x.x.x.tar.gz
mv Smarty-x.x.x smarty

– Install TCPDF

1.4. Development version 7

http://www.smarty.net/
http://www.tcpdf.org/

phpaga Documentation, Release 0.6-beta3

[cd ext/]
unzip tcpdf_5_9_029.zip

8 Chapter 1. Installation

CHAPTER

TWO

UPGRADE

2.1 In general

2.1.1 Data

CREATE A BACKUP OF YOUR DATABASE BEFORE PERFORMING ANY UPGRADE.

You are advised to back up your data before performing any upgrade.

2.1.2 Requirements

Check whether the software requirements have changed at the section Requirements.

2.1.3 Web server

Some web servers need to be restarted when new or updated language catalogs are installed (under locale/).

2.1.4 Database structure

Since after 0.3, phpaga features a web interface for database upgrades which can be opened at “System / Database
upgrades”. Once you have installed the new release, open this page and follow the instructions shown there.

2.1.5 Help

If you need additional help consider joining the user’s mailing list.

2.2 Upgrading from 0.5.2 to 0.6

2.2.1 Billing plugins

Billing plugins have been moved to the directory plugins/billing/. If you had any custom plugins under
lib/bill/ make sure you move them to their new place.

Also, billing plugins are now classes that extend the base class BillingDetails. Plugins that ship with phpaga
have been converted. If you use a custom billing plugin you will need to migrate it to the new format. See Billing
plugins for information on how to migrate existing plugins.

After upgrading to 0.6 and applying the database upgrade - and each time you install a new plugin - you must
open the billing plugins management page (under Administration, Billing plugins). This will try to automatically

9

phpaga Documentation, Release 0.6-beta3

recognize the migrated billing plugins, and allow to you manage all available billing plugins. (This step is required
for the invoicing functionality to continue to work.)

2.2.2 User settings

The way user settings are stored has been changed (and made more flexible). These changes are not visible to the
user, but any existing user’s (personal) configuration settings have to be configured again. This regards only a very
few settings (mainly the number of records per page and some sorting preferences), therefore no migration script
has been provided. Sitewide settings and permissions are not lost during this upgrade.

2.2.3 Language settings

The handling of language settings has been simplified. After the successful upgrade, all users will most likely
default to English and will need to select their desired languages from within their user settings.

2.2.4 PDF customization

PDF files are now generated by TCPDF. The previously used PDF templates can no longer be used. If you have
used custom PDF templates you will need to write new templates that are based on the PDF base classes.

2.2.5 Smarty 3

Smarty 2.x has been replaced by Smarty 3 (3.0.5 or later). In order to avoid any problems, you need to remove the
compiled templates from the templates_c/ directory. Also, if you have written your own template set, make
sure the templates are still valid.

2.2.6 Libraries

If you are using the code from the bitbucket repository you need to install above new libraries (TCPDF and Smarty
3). This step is not necessary if you downloaded an official phpaga release package, as the libraries are bundled
with the package.

To install the required TCPDF library: download the latest package and unzip it under phpaga/ext/, so that
phpaga/ext/tcpdf/ contains the library and its subdirectories.

2.2.7 Sidebar

In case you are missing the (optional) sidebar after a successful upgrade: this is not a bug - the sidebar has been
removed in favour of a cleaner layout.

2.3 Upgrading from 0.5.1 to 0.5.2

After installing 0.5.2, an error will be shown when opening the dashboard. This is due to the fact that the tasks’
start and end dates need to be migrated to a different data type. Simply open “System / Database upgrades” and
follow the instructions on screen.

2.4 Upgrading from 0.5 to 0.5.1

After installing 0.5.1, open “System / Database upgrades” and follow the instructions on screen.

10 Chapter 2. Upgrade

http://www.smarty.net/
http://smarty-php.googlecode.com/svn/trunk/distribution/SMARTY2_BC_NOTES
http://www.tcpdf.org/

phpaga Documentation, Release 0.6-beta3

2.5 Upgrading from 0.4 to 0.5

2.5.1 Invoices and payments

Support for payments on unpaid invoices/bills has been added. During the database upgrade from 0.4 to 0.5, all
existing invoices will be automatically migrated.

If you have written your own billing plugin make sure to update it to make use of the payments system. Use one
of the billing plugins that ship with phpaga to see what changes are necessary.

2.5.2 eZ Components / jqPlot

ezComponents are no longer used; graphs are now created with jqPlot, a plotting and charting plugin for the jQuery
Javascript framework. phpaga comes with jqPlot (and jQuery) included, so no extra installation is required.

2.6 Upgrading from 0.3 to 0.4

2.6.1 JpGraph / eZ Components

JpGraph is no longer used; graphs are now created with ezComponents. See above about eZ Components instal-
lation.

2.6.2 PEAR replaced

PEAR is no longer required. All dependencies on PEAR packages have been replaced by phpaga’s own code.

2.6.3 Billing plugins

Filed (tracked) expenses can now be added to invoices. If you have written your own billing plugin you need to
apply a few little changes. First, and most important, a new parameter needs to be added to the function parameter.
Then, the invoice calculation details need to be extended. Also, billing plugins are no longer supposed to return
an error code. Refer to one of the billing plugins that come shipped with phpaga to see what needs to be changed.

2.6.4 File upload and pictures

Files can now be associated to persons. The script tools/migrate_personpictures.php can be used to
migrate the existing pictures (from persons.pe_fotoname to files).

2.6.5 UTF-8: Locales and database

UTF-8 is now used as the encoding for all supported locales. Unfortunately, in previous releases phpaga used to
store data in a different format (depending on your locale, most likely LATIN1). Therefore you need to convert the
database to UFT-8 before using phpaga 0.4. You will also need to make sure that the desired locales are available
in UTF-8.

If you have been storing data with different encodings in the same database, the conversion will most likely
produce garbled data, no matter what database system you are using.

iconv is a tool to convert the encoding of given files from one encoding to another; it should be
available on most *nix-like systems. If it is not already installed, consult your package management
system. A Win32 port of iconv is available at gettext (& libiconv) for Win32 with downloads at
http://sourceforge.net/project/showfiles.php?group_id=25167 (fetch the libiconv-*-bin.woe32.zip package).

2.5. Upgrading from 0.4 to 0.5 11

http://www.jqplot.com/
http://gettext.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=25167

phpaga Documentation, Release 0.6-beta3

PostgreSQL

If for some technical reason you are not able to perform the steps below (for example because you do not have
administrative rights to drop and create a database) you can enable the setting PHPAGA_PGSQL_ENCODING
in etc/config.local.php. Read more about this setting in its description directly in the file. It is highly
recommended, though, that you perform the steps below and migrate the existing data and structure to UTF-8.

The following steps need to be taken to convert the existing database (and data) to use UTF-8:

• Create a database dump

pg_dump -Fp -U phpaga phpaga >| /tmp/phpagadump.sql

• Convert the database dump to UTF-8

iconv -f LATIN1 -t UTF-8 phpagadump.sql -o phpagadump.sql.utf8

Replace LATIN1 with the appropriate encoding for your data. Most likely this is will be LATIN2 if you
were using the Hungarian locale, KOI8-R if you were using the Russian locale, and LATIN1 for most other
languages supported by phpaga in versions <= 0.4.

• Edit phpagadump.sql.utf8 and make sure that the line

SET client_encoding = ’LATIN1’;

is changed to

SET client_encoding = ’UTF8’;

• Connect to the database server from the terminal (psql)

• Drop the existing database

template1=> drop database phpaga;

• Create the database with the proper encoding (‘UTF8’ for PostgreSQL 8.x, ‘UNICODE’ for PostgreSQL
7.x)

template1=> create database phpaga with encoding ’UTF8’;

• Connect to the database

template1=> \c phpaga

• Restore the database from the converted dump

phpaga=> \i phpagadump.sql.utf8

MySQL

The following steps need to be taken to convert the existing database (and data) to use UTF-8. Replace “latin1”
in the following example with the encoding currently used by your database. The procedure described below is
not guaranteed to work - while it can work for certain data and encodings, it can also produce garbled data under
certain circumstances.

• Create a database dump

mysqldump --default-character-set=latin1 -p -u username phpaga > phpagadump.sql

• Edit phpagadump.sql and change the statement

SET NAMES latin1

to

12 Chapter 2. Upgrade

phpaga Documentation, Release 0.6-beta3

SET NAMES utf8

Then replace all occurences of

DEFAULT CHARSET=latin1

with

DEFAULT CHARSET=utf8

• Connect to the database server from the terminal (mysql)

• Drop the existing database

mysql=> drop database phpaga;

• Create the database with the proper encoding (‘UTF8’)

mysql=> create database phpaga default character set utf8 collate utf8_general_ci;

• Exit from the database terminal

• Restore the database from the dump

mysql --default-character-set=utf8 -p -u username phpaga < phpagadump.sql

2.7 Upgrading from 0.2 to 0.3

After 0.2 the internationalization mechanism was switched from definitions to gettext. Make sure your version of
PHP supports gettext and has the locales for the languages you want to use installed. (See Requirements)

All application settings that were formerly defined in etc/config.php are now managed within phpaga itself.
Once you have configured etc/config.local.php, you can fire up your browser and change these settings
from the Admin menu (“Sitewide settings”).

Make sure you have PEAR DB version >= 1.6. Install the PEAR packages Log and Mail and all other required
PEAR packages.

Execute the scripts required to upgrade the database structure. Depending on the RDBMS you are using, this will
be sql/upgrade_0.2-0.3.pgsql for PostgreSQL or sql/upgrade_0.2-0.3.mysql for MySQL. If
you use MySQL, execute also sql/mysql-innodb.mysql; this will convert all database tables to the InnoDB
format.

phpaga 0.3 introduces a permission system. In order to migrate to the permission system, the former administrator
gets all available permissions. It is then in her responsibility to assign the proper permissions to the remaining
users. The necessary SQL statement to perform this migration is contained in the upgrading scripts (see above
paragraph).

phpaga 0.3 introduces news to the billing system. Invoices can now have line items. In order to convert the
existing invoices to the new format, you will need to run a conversion script. This script must be run after
upgrade_0.2-0.3.(pgsql|mysql) has been applied and before any new invoice is created. The script is
named convert_invoices.php and located in the directory tools/. Open the file with an editor and set
the parameters in the first section according to your configuration. Then run the script from the shell.

2.8 Upgrading from 0.2rc1 to 0.2

Configuration settings are now defined via web. You will need to replace your old etc/config.php with the
new one from the package, and later change the settings from the Admin menu (“Sitewide settings”).

Smarty and the R&OS pdf class are no longer bundled with phpaga. Refer to the Requirements section to find
instructions on where to find and how to install these packages.

2.7. Upgrading from 0.2 to 0.3 13

phpaga Documentation, Release 0.6-beta3

2.9 Upgrading from earlier versions

2.9.1 PostgreSQL

Execute the proper upgrade*.sql script from sql/.

2.9.2 MySQL

From 0.1.1 to 0.2

The following instructions give you the necessary information to upgrade your phpaga database under MySQL
from phpaga 0.1.1 to phpaga 0.2.

Since phpaga 0.2 we use Pear::DB to abstract database access. Since MySQL does not support sequences directly
(it has the ‘autoincrement’ feature), Pear needs a set of help tables that contain the sequence values.

• Apply sql/upgrade_0.1.1-0.2.mysql and sql/phpaga_sequences.mysql:

$ mysql -uroot -p phpaga < sql/upgrade_0.1.1-0.2.mysql
$ mysql -uroot -p phpaga < sql/phpaga_sequences.mysql

• The user passwords need to be migrated from MySQL password() to md5 hashes, in order to have a common
way to manage encrypted passwords on different rdmbs. You can use md5sum to generate md5 hashes.
Example (under Debian GNU/Linux):

$ md5sum.textutils --string oldpassword
d5b5fffc89f961903fb3c9a173f1b667 "oldpassword"
mysql> UPDATE users SET usr_passwd = ’d5b5fffc89f961903fb3c9a173f1b667’
WHERE usr_login = ’@YOUR_LOGIN@’;

If you do not have md5sum.textutils you can create a small php script that contains the following lines:

<?php
echo md5(’@PASSWORD@’);
?>

and either parse it via the command line php or via a php-enabled webserver and the output string will be
the correct md5 value for your password.

From 0.2-rc1 to 0.2

In order to upgrade from phpaga 0.2-rc1 to 0.2 release simply apply sql/upgrade_0.2_rc1-0.2.mysql:

$ mysql -uroot -p phpaga < sql/upgrade_0.2_rc1-0.2.mysql

2.9.3 Migrating phpaga from MySql to PostgreSQL

Starting with version 0.2-rc1 phpaga features database abstraction through Pear::DB. As of version 0.2 the follow-
ing rdbms are supported:

• PostgreSQL

• MySQL

If you want to migrate your phpaga data from MySQL to PostgreSQL you might find the following instructions
of help.

• Create a mysqldump of phpaga containing just the data:

14 Chapter 2. Upgrade

phpaga Documentation, Release 0.6-beta3

mysqldump -uphpaga -pyourdbpasswd -c -t phpaga > phpaga_data.sql

• Connect to the PostgreSQL phpaga database with pgsql using the phpaga db user:

psql phpaga phpaga
phpaga=> \\i phpaga_data.sql

Check the output for errors.

• Set the sequences to the correct values:

phpaga=> \\i /path/to/phpaga/sql/phpaga_setseqvals.pgsql

This should be it. Please report any problems via the mailing list.

2.9. Upgrading from earlier versions 15

phpaga Documentation, Release 0.6-beta3

16 Chapter 2. Upgrade

CHAPTER

THREE

PDF CUSTOMIZATION

The TCPDF library is used to create PDF documents. While extending the TCPDF class, I have tried to follow
the TCPDF author’s convention to start method names with a capital letter.

It is possible to customize the layout of invoices and quotations by extending the two classes InvoicePDF and
QuotationPDF respectively.

The directory plugins/pdf contains all custom PDF layout implementations. Have a look at the file
invoice_example.php to see a sample customization. Refer to the full implementation in lib/pdf.php
to see which methods and members can be used and overwritten.

3.1 Invoices

Give your class a speaking name (for example AcmeInvoicePDF) and name the file accordingly
(plugins/pdf/acme_invoice.php).

This class must extend the class InvoicePDF.

3.2 Quotations

In order to customize the layout of quotations, the class QuotationPDF must be extended.

3.3 Sitewide settings

In the Sitewide settings section, under the PDF Settings tab, the desired templates can be selected for both invoices
and quotations. In the case of the above example, the option AcmeInvoicePDF will show up in the Invoice
template selection box.

17

http://www.tcpdf.org/

phpaga Documentation, Release 0.6-beta3

18 Chapter 3. PDF customization

CHAPTER

FOUR

BILLING PLUGINS

phpaga gives you the ability to write your own custom billing plugins which decide how totals and subtotals are
calculated when you generate PDF bills to send to your clients. phpaga comes pre-installed with a few user-
contributed plugins to calculate taxes for various countries, and a very simple plugin, which returns the total, not
including any taxes. You can use these files as a reference implementation of what a billing plugin should look
like. If you happen to write your own generalized plugin feel free to contribute it back.

4.1 Mini HOWTO

Billing methods can be created as plugins. The plugin file can be freely named and must be installed
under the directory plugins/billing/ The plugin consists of a class that extends the base class
BillingDetails. It defines the static member $plugin_info and implements at least the two abstract
functions get_filename() and calculate().

The member $plugin_info is an array that contains the following information about the plugin: Autor name
and email, a short description, and the country code where this plugin is applicable.

public static $plugin_info = array(
’author’ => ’Florian Lanthaler <florian@phpaga.net>’,
’description’ => ’Liberi professionisti / ditte individuali’,
’country’ => ’IT’

);

The function get_filename() must be implemented as follows:

public static function get_filename() { return basename(__FILE__); }

The function calculate() is the core of the plugin and handles the calculation of the bill’s details (for both
invoices and quotations). It can count on the availability of the following class members:

float $this->startsum # The startsum from which to calculate the bill
int $this->curr_id # ID of the currency to be used
string $this->curr_name # Name of the currency to be used
float $this->expensesum # Amount of expenses (optional)
float $this->paymentsum # Sum of payments (optional)
float $this->feesum # Sum of late fees (optional); developed for notaxes

plugin, so may require new code to account for taxes
that accrue in total amount due i.e. endsum

The following members should be calculated or populated within this function:

float $this->endsum # The full sum that is to be paid
float $this->balance_due # The balance due
array $this->details # Array containing the full calculation with

description and amounts

Details are added to the member details with the methods add_detail(), add_fee_detail(), and
add_payment_detail(). The method add_separator() adds a separator (line).

19

phpaga Documentation, Release 0.6-beta3

Please refer to the sample files shipped with phpaga (to be found under plugins/billing/); you can use one
of them as a base for your personalized billing method.

This should provide a standard interface with which users can create their own plugins that create their bills exactly
the way they (or their legislation) needs them.

As of phpaga 0.3, billing method plugins can be installed/uninstalled from within phpaga. The files are not
physically installed or removed, but the database entries can be managed from within the administrator’s interface.

After upgrading from earlier releases to phpaga 0.6 - and, generally speaking, each time a new billing plugin is
installed - you must open the billing plugin management interface at Administration, Billing plugins. This will try
to automatically recognize the migrated billing plugins, and allow to you manage all available billing plugins.

4.2 Sample implementation

The following is an example of a billing plugin:

class ItaLiberoprofEuro extends BillingDetails {

public static $plugin_info = array(
’author’ => ’Florian Lanthaler <florian@phpaga.net>’,
’description’ => ’Liberi professionisti / ditte individuali’,
’country’ => ’IT’

);

public static function get_filename() { return basename(__FILE__); }

public function calculate() {

$inps = 0;
$imponibile = 0;
$iva = 0;
$irpef = 0;

/* 4% INPS/NISF (National health care) */
$inps = sprintf("%.2f", $this->startsum * 0.04);

/* Imponibile (Taxable base) */
$imponibile = sprintf("%.2f", $this->startsum + $inps);

/* IVA 20 % (VAT) */
$iva = sprintf("%.2f", $imponibile * 0.2);

/* IRPEF 20 % (Regional tax) */
$irpef = sprintf("%.2f", $imponibile * 0.2);

/* End sum without expenses*/
$preendsum = sprintf("%.2f", $imponibile + $iva - $irpef);

/* End sum */
$this->endsum = $preendsum + $this->expensesum;

$this->add_detail("Competenze", $this->startsum);
$this->add_detail("Rivalsa contributo INPS 4% Art. 4 DL 28.3.96 n 166", $inps);
$this->add_separator();
$this->add_detail("Totale imponibile", $imponibile);
$this->add_detail("IVA 20%", $iva);
$this->add_separator();
$this->add_detail("Totale fattura", sprintf("%.2f", $imponibile + $iva));
$this->add_detail("- Ritenuta d’acconto IRPEF 20%", $irpef * -1);
$this->add_separator();

20 Chapter 4. Billing plugins

phpaga Documentation, Release 0.6-beta3

if (is_numeric($this->expensesum) && ($this->expensesum > 0)) {
$this->add_detail("Somma parziale", $preendsum);
$this->add_detail("+ Spese rimborsabili", $this->expensesum);
$this->add_separator();

}

$sep = false;

/* Late fees */
if (is_numeric($this->feesum) &&($this->feesum > 0)) {

$sep = true;
$this->add_fee_detail(_("+ Mora"), $this->feesum);

}

/* Payments */
if (is_numeric($this->paymentsum) &&($this->paymentsum > 0)) {

$sep = true;
$this->add_payment_detail(_("- Pagamenti"), $this->paymentsum);

}

if ($sep)
$this->add_separator();

/* Balance due */
$this->balance_due = $this->endsum - $this->paymentsum + $this->feesum;
$this->add_detail("Netto a pagare", $this->balance_due);

}
}

4.2. Sample implementation 21

phpaga Documentation, Release 0.6-beta3

22 Chapter 4. Billing plugins

CHAPTER

FIVE

GETTING STARTED GUIDE

Sean Hull $Date: 2005-07-10 15:57:50 +0200 (Sun, 10 Jul 2005) $

(Note: This guide has been written by Sean Hull in 2005. Some things have changed since then, but the core
information still applies. Florian Lanthaler)

5.1 Introduction

phpaga is one of those Open Source projects that really fits a niche. Are you an independent contractor, sole
proprietor, freelancer, or perhaps you run a small business? Then surely you need a system to handle your billing.
phpaga not only fits the need, it will do much more and surprise you with information about your business that
you may not have paid attention to.

Presumably if you’re already here reading these docs you’re already SOLD on the LAMP or LAPP framework.
If not I’ll say a word or two about that. If you’re using a desktop application to do your finances you have
to worry about licensing and upgrades, bugs & fixes. What’s more you’re confined to the desktop, can’t share
the information, accross the city when you’re at various client sites, or across the world if you’re sharing the
information, exchanging ideas with colleagues or have business partners in other locales. A web-based application
moves the data out of your office and into the datacenter, where it can easily be part of your regular backup routine
or hosted by a hosting provider who upgrades the OS, monitors security, and provides backups and so on.

5.2 Features

A picture or in this case a website is worth a thousand words. So before I dig into the features of phpaga, I’d like
you to take a minute and check out the live demo (Note: the demo is no longer online) with user:demo pass:demo.
It already has lots of companies, projects, invoices, quotations, and resources so you can see all the graphs and
reports in action.

phpaga is a billing application that can keep track of your personal or small business finances, and is built on the
LAMP or LAPP framework. What else can we say. Well it is international, handling billing for Australia, Canada,
Germany, Italy, and the USA. And that’s just with the builtin plugins. If you don’t find what you need, you can
write your own plugin quite easily. It can handle invoices based on hourly work, or named items with a cost. It
can handle projects with multiple resources each with different hourly rates. And if you use those folks on another
project, they can have different rates on those projects too. It can produce spectacular PDF quotations and invoices
for your clients at week-end, month-end, or however you like. Furthermore it has extensive reports such as paid
and unpaid invoices (turnover), summary reports for people, projects, and categories. The main page or dashboard
also includes a nice 52 week graph of weekly manhours work. All this information and presentation helps you
begin to get a bigger picture of your business, and finances to help you run your business better.

• Major Features

– custom user logins

– persons (project resources) without logins

23

http://en.wikipedia.org/wiki/LAMP_(software_bundle)
http://live.phpaga.net
http://en.wikipedia.org/wiki/LAMP_(software_bundle)

phpaga Documentation, Release 0.6-beta3

– default and per-project customizable hourly billing rates

– company (client) can have more than one project

– projects + subprojects

• Reports

– weekly manhours reports

– paid/unpaid invoices

– project timeline

– summary by persons

– summary by project

– summary by task

– summary by customer

• Internationalization

– international language support

– international currency support

– billing plugins for Australia, Canada, Germany, Italy & USA

• Invoices

– hour based line items at billable rate

– task based line items at fixed cost

– printable/emailable PDF for client

– enable/disable letterhead, tasklist, timesheet

• Quotations

– customizable line items

• Miscellaneous

– customizable company, person, project, and project status categories

– customizable color scheme

– default hourly billing rates

– customizable hourly billing rates by project

5.3 Quickstart

A quick start is what everyone wants don’t they. I know when I install a new piece of open source software, I
quickly jump to this section, skim through the steps, and wing it. If I can’t get it to work I go back to that section,
and only if I absolutely have to do I touch the real docs. So, here goes.

The first thing you probably want to do when you test out this system is to generate a PDF invoice, right? Ok,
here’s what you do. After installation, you’ll have an “admin” account, so login with that.

• Create a client - the recipient of your invoice

– click on the “Companies” link (MAIN section)

– click the “add company” link

– fill in all the information and click “submit”

– follow these steps a-c to create your parent company as that is disassociated from the user you login as

24 Chapter 5. Getting Started Guide

phpaga Documentation, Release 0.6-beta3

• Create a project

– click on the “Projects” link (MAIN section)

– click “Add Project” link in the “Selected projects” section

– fill in the information, be sure to select the “Customer” who is the recipient, and “Billing Company”
who is the owner of the project

• Create a person

– click on the “Persons” link (MAIN section)

– click on the “Add Person” link in the “Persons” section

– fill in the info and select a company

– default hourly rate can be changed for each project this person works on

– Don’t jump to the project resource section yet, this person won’t show up. First you have to create a
user.

• Create a user

– click on the “Users” link (ADMINISTRATION section)

– click “Add user” under the Users section

– enter the login, and select the “Person” you created in step 3

• Add project members and tasks

– click “Projects” link (MAIN section)

– under “Selected projects” click your project name

– click the “Add Project Member” link

– select a Person from the popup and their default job category and default hourly wage will be filled in
automatically! Of course if they are different for this project, you may change them.

– click “submit” when you’re done

– when the popup window for “Add Project Member” closes click “Add Task” on the “Project: your-
project-name” page.

– select the “Project member”

– enter the start/end date or use the popup calendar to select them. The first + last day of the month make
a lot of sense here.

– Fill in the duration as total hours worked.

– enter a description of what that resource did this month

• Review project page

– click the project name under “Project information” section

– you’ll see some changes there, and the graphs and details will include that new task you’ve added

• Create your invoice

– click on the “Invoices” link (FINANCE section)

– click “Add invoice with tasks” under “Invoices” section

– if these are your first invoices and tasks it won’t be obvious, but at this point it’s worth noting that only
unassigned tasks which don’t appear on another invoice will show up.

– click the “Create Invoice” link

– select or deselect tasks as appropriate, or add custom line items

– click recalculate if you’ve removed items

5.3. Quickstart 25

phpaga Documentation, Release 0.6-beta3

– when you’re done, click “Create line items for associated tasks” button

– finally if all is ok click “Create Invoice” button

– note a Notice box may be displayed at the top if you don’t select a recipient company

– enter a custom invoice number if necessary

– the resulting window will be your invoice in HTML format

– click “Export PDF” + select options

– select save-as or print from your Acrobat client

5.4 Understanding the workflow

5.4.1 Users vs Persons

The separation of users and persons revolves around the idea of those who can login to phpaga (users) and those
who are just in the contact database (persons). At this point in time a user can exist, that is a login to phpaga,
with associated permissions to use and administrate the system, without being part of any project or company.
What this means is that you can use phpaga as your contact database, but all of those Persons won’t show up in a
resource list when you are creating or modifying a project. Only if they have a User defined will they show up in
such a popup list.

Permissions for a user, and how they can use the phpaga system must be modified after that user is created.
Click the “Users” link in ADMINISTRATION section and you’ll see a “Users” table. (You can also search of
course) If you click the “Login” column, you’ll get user details and all of the permissions checkboxes. If you
click the “Name” column, you’ll get the user’s profile (same as you do when you are logged in as yourself, and
click the “Profile” link under your named section. All of the various permissions are available here, allowing the
administrator to control what other phpaga users can do.

5.4.2 Companies

As explained in the quick start section above, a company is any financial entity that needs to be represented in
phpaga, whether it is the billing company, that is your company that is using phpaga, or your clients - recipient
companies.

5.4.3 Projects

Projects are associated with companies so you must have the OWNER company created before you create a project.
That company can have 0 or more projects associated with it. However, and here’s where it gets tricky, but very
FLEXIBLE in ways you may not need now, but could need later. The billing company must also exist when you
create a project.

For example, suppose your 5-man consulting enterprise wants to use phpaga to manage it’s business invoicing.
You have three projects, but you decide to break the company into Windows-arm, and Linux-arm. Two of your
new projects are on Linux, and one is on Windows, for GE Capital. You create project A and select the customer
as “GE Capital” and the Billing company as “Linux-arm”. For project B it’s the same thing. However for project
C you select the Billing company as “Windows-arm”.

For each project you can select a parent project. This allows phpaga to keep track of and visualize relationships
between projects. If you go to live.phpaga.net (Note: the demo is no longer online) and log in (with “demo” and
“demo”) and then go to the details page for the project “phpaga parent”, you can see a relationship graph under the
section “relations”. This graph is created on the fly with the Graphviz package. Try clicking on one of the boxes
representing a related project and you this project’s page will load. The currently selected project will always
show in green, whereas the other projects are shown in grey.

26 Chapter 5. Getting Started Guide

http://live.phpaga.net/

phpaga Documentation, Release 0.6-beta3

5.4.4 Creating Quotations

5.4.5 Tasks + Hours

As you can see in the section above, you can enter tasks at any time while using phpaga. At the time you record
a task, you can set a duration, or a start and stop time, plus a description. At that time you specify the project to
which the task belongs, but you DON’T specify the invoice. Again, seemingly complex but you will find that it is
really FLEXIBILITY in disguise. You may have worked some hours in May but you want, or the client asked you
to bill them on your June invoice. That’s no problem.

When you add tasks they go into a pool of unassigned hours. Under the FINANCE section you can click “Unbilled
hours” at any time to see the list. Of course when you go to create an invoice, and assign those tasks, they will no
longer be included in this list.

5.4.6 Creating Invoices

This should be your favorite part of using phpaga, and your favorite part of running your business! When you go
to create an invoice you can do it with description/price line items or with tasks. Your choice. You may have to
bill your client for equipment only one month, for that you would simple “Add invoice” not “Add invoice with
Tasks”.

5.4.7 Enter Invoice Paid Information

When you get a check from a client, you want to let phpaga know about it. Click on “Invoices” under the
FINANCE section, and click the invoice from the list, or do a search. The HTML detail page for the invoice will
display, with a “Set Payment Date”. Click the calendar button and select the date it was paid. This will update
various graphs, and reports in phpaga, letting you know where your finances are.

5.5 Understanding the reports

5.5.1 Main report - weekly manhours

By clicking “Main” under the MAIN section you can see two manhours breakdowns, one for the year, and one by
day for the current month.

5.5.2 Finance report

This report is a summary of billed and collected money for your business. When a check comes in from one of
the invoices you’ve sent to a client, you record the date it was paid (see 7. Enter Invoice Paid Information above).

5.5.3 Summary reports

Under the ADMINISTRATION section you see a link for “Summary report”. There are actually FOUR great
reports hidden under this little link. One provides a projects breakdown, by hours per project. The next one
provides breakdowns by persons or resources who worked on all projects, and how much they contributed to the
total. Next is a category breakdown pie chart, which as described in the user profile section below, if you have
people who work as managers, programming and development, consulting, sales, marketing, human relations, and
so on, this will break up each of their tasks so you can see where the bulk of billable time went. The last one is
the turnover graph.

5.5. Understanding the reports 27

phpaga Documentation, Release 0.6-beta3

5.5.4 Project timeline

(deprecated - this feature has been removed)

There is another report hidden away in this application which is quite useful, and you’ll be glad when you find
it. Click on “Projects”, and under “Selected projects” click the “Timeline” link next to “Add project”. Under the
project column you’ll see each project you’re working on, and based on the estimated start and end times, the
timeline will display bars so you can see which projects overlap, and thus when thinks might be more rocky, or
conversely when you have time for some new work.

5.5.5 User profile report

In this report you’ll see three sections. Manhours is the same detail as seen in the main dashboard report, but just
for you. It is a breakdown of the number of hours worked per week on a yearly scale. Very useful for viewing
your business at a glance. The Task graph is the next section you will see and it is broken up nicely into type of
work you do and how much time you spend. If you wear a lot of different hats, for instance business manager,
DBA, Unix Administrator, marketer, sales-drone, and so on, you can see the breakdown easily.

5.6 Settings and customizing

Except for the user settings below, all of these settings are under the link “Sitewide settings” in the ADMINIS-
TRATION section.

5.6.1 Graphs

JpGraph is the PHP module you installed to provide graphs for phpaga. You can set the width and height for the
various graphs, change the work-week to 35 hours for France, and 70 hours for New York!! Also you can changes
settings for the Gantt Chart showing financial summary of paid and unpaid invoices.

(Note: Charts are now generated via a JavaScript library, JpGraph is no longer required.)

5.6.2 Invoice Letterhead Formatting

The Letterhead section includes all the fields you will need to control how the PDF will format. It may make sense
to put the street address in the “Location” field, and the “New York, NY 10003” entry in the “Street address” field
just because of the order they show up on the PDF. Experiment until you like the output. In the US if you’re a
C-Corp you’ll fill out Company tax number, but leave personal tax number blank, and vice-versa if you’re a sole
proprietorship. Other countries regulations are different of course, so take that into consideration. The footer line
can be left blank, or filled in as appropriate for your needs, as can the logo file.

5.6.3 PDF Settings

In this section there are some general PDF settings for invoices, quotations, and the “Print” button you’ll see in
various places throughout phpaga. They are fairly self-explanatory, and direct how the PDF will be generated so
that Acrobat can do it’s magic.

5.6.4 Misc. Settings

5.6.5 Categories, Currencies + Countries

Just declared your own soverign state, you can add it into phpaga! Want to add another currency besides the
included USD and Euro abbreviations, go for it. The categories edit is probably the one you’ll use most often.

28 Chapter 5. Getting Started Guide

http://en.wikipedia.org/wiki/Gantt_chart

phpaga Documentation, Release 0.6-beta3

Types of companies, types of tasks in a project, types of jobs or positions held within a company, categories for
resources, and even project statuses can all be configured.

5.6.6 Themes

In the layout section phpaga will list the CSS stylesheets that it finds in your install directory
htdocs/styles/*.css so if you want a new one, copy one of those files, rename it, and edit the settings
inside there. See Wikipedia for details on CSS.

5.6.7 User settings

Under your name section, the “Settings” link jumps to a page allowing you to change your user login information,
and your permissions.

5.6.8 Other Layout settings

Do you like to use ‘.’ to separate numbers and decimals, or do you prefer ‘,’? You can configure that here. Like to
have your month/day/year date layout, no problem. Set the sitewide date format as well. All sorts of other settings
can be configured here, such as how many items to display for tasks, projects, invoices, and so on.

5.7 Miscellaneous items

5.7.1 Forgotten Password

If you forget your password, you have to get your SQL thinking cap on and change it. If you don’t recall the name
of your database, do:

$ md5sum.textutils --string oldpassword
d5b5fffc89f961903fb3c9a173f1b667 "oldpassword"
$ mysqlshow

Then login as follows:

$ mysql phpaga
mysql> select usr_id, usr_login, usr_passwd from users;
+--------+-----------+----------------------------------+
| usr_id | usr_login | usr_passwd |
+--------+-----------+----------------------------------+
2	sean9	4f2a1493c661c0f2d2ee9a37040b8082
3	neal9	3e7023ed317ed603851f22d510924ca1
4	akahn	b27fad92c6ddeddf0bfd6eb9871a8c79
+--------+-----------+----------------------------------+
3 rows in set (0.00 sec)
mysql> update users
set usr_passwd = ’d5b5fffc89f961903fb3c9a173f1b667’
where usr_id = 4;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Note that if you don’t have md5sum.textutils installed you can also use this bit of php code to get the hash string:

<?php print md5("oldpassword")."\n"; ?>

5.7. Miscellaneous items 29

http://en.wikipedia.org/wiki/Cascading_style_sheets

phpaga Documentation, Release 0.6-beta3

5.7.2 Using billing plugins

There is a howto on creating billing plugins in the docs/ directory. Read that for details. You’ll basically put a
new php file into plugins/billing/ and then select it in your “Sitewide Settings” so it will be the default.
You can copy one of the existing ones in that directory, and edit it as appropriate.

5.7.3 Customizing templates

Templates are found in the templates/ directory. You select one in “Sitewide Settings”.

The customized template sets are an option, if someone has particular layout needs.

The theme (.css) should be enough to suit most people’s needs. In case you need a rather exotic layout, say you
don’t need certain information or you want the layout to be readable on a handheld device over a slow network
link, you can create your own template set. Simply copy the whole templates/phpaga/ directory to a new
name, say templates/mytheme/, and edit the files at will. You can, for example, leave out all the graphs and
optimize the layout for 200x160 pixel screens.

In general, it is not recommended that users create their own template set unless they really want to keep up with
development. Whenever we introduce a new variable (or remove an existing one) in one of the template files, this
change would need to be applied to the customized template set too. If you do venture into this area, be sure to
contact us here at phpaga, and contribute those changes for everyone to benefit from. That’s what open source is
all about after all.

5.7.4 Customizing themes

Themes are found in htdocs/styles/ so copy one of those css files to rename the file, and then edit the
contents for your needs. Wikipedia CSS Info

30 Chapter 5. Getting Started Guide

http://en.wikipedia.org/wiki/Cascading_style_sheets

CHAPTER

SIX

CHANGES

6.1 phpaga dev

6.1.1 New features

• PDF files are now generated by TCPDF. The previously used PDF templates can no longer be used, but
simple plugins can customize the base PDF classes.

• The dashboard has been extended to show the user’s manhours per current year/month/week.

• Added jQuery UI.

• Various user interface enhancements.

• The bill, person and project detail pages have been “tabbified”.

• Manhours charts can now be browsed through by month and/or year without reloading the page.

• Replaced the previous color picker with the jQuery-based “Really Simple Color Picker”.

• Replaced the previous date picker with the jQuery UI Datepicker.

6.1.2 Fixed

• Invoices without line items can no longer be saved; old invoices without line items can now be removed.

6.1.3 New billing method plugins

• Cynick Young has contributed various Canadian billing plugins.

6.1.4 Translations

• Full Spanish (Castilian) translation by Ricardo A. Hermosilla Carrillo

6.1.5 Other

• The handling of languages and language settings has been simplified.

• Billing plugins have been moved to the directory plugins/billing/. If you had any custom plugins under
lib/bill/ make sure you move them to their new place.

• Also, billing plugins are now classes that extend the base class BillingDetails. Plugins that ship with
phpaga have been converted. If you use a custom billing plugin you will need to migrate it to the new
format. See Billing plugins for information on how to migrate existing plugins.

31

phpaga Documentation, Release 0.6-beta3

• For developers: New sitewide settings can now be added without the need of adding database records. The
default settings are defined in the array $phpaga_default_settings in etc/globals.php.

• The handling of user settings has been simplified (a user’s settings are now stored as a serialized array with
the user record).

• Lots of code cleanup, mainly regarding templates and JavaScript code.

• The (optional) sidebar has been removed in favour of a cleaner layout.

• The tasks’ start and end date have finally been migrated to use proper data types (instead of Unix time,
“timestamp without time zone” for PostgreSQL and “datetime” for MySQL are now used).

• smarty-gettext has been included in the repository (under ext/), thus it is no longer necessary to install it
separetely.

• Smarty 3 is used. If you have written your own template set, mnake sure your templates are valid for Smarty
3.0.5 or later.

6.2 phpaga 0.5.1

6.2.1 New features

• The company page has been “tabbified”.

6.2.2 Fixed

• Fixed an issue with finance calculations when the fiscal year does not start in January.

• Fixed a minor layout issue on the finances report.

6.3 phpaga 0.5

6.3.1 New features

• Charts are now generated via JavaScript by using the jqPlot library. Therefore ezComponents are no longer
required.

• Late Fees - Manual process; Adds late fee to invoice for unpaid balance. Late fee amount calculation based
on percentage specified in Sitewide Settings. Updated bill page and pdf invoice to display late fees

• Payments - Support for payments on unpaid invoices/bills.

– Updated finances reports to use payments in calucations

– Updated bill page and pdf invoice to display payments and balance due; ticket #42

– Payment date automatically set when payments equal or exceed invoice amount.

– Added option to Sitewide Settings to show/hide ‘Set Payment Date’ link. May be times when date
needs to be set manaully.

• Updated all existing billing plugins to include support for payments and late fees. NOTE to authors of
billing plugins: Please verify changes are backward-compatible.

• Added Notes field to invoices and payments.

• Added ability to enable/disable display of currency abbreviation after monetary values.

• Added field to Sitewide Settings for monetary symbol to be displayed in front of monetary values e.g. $ or
C

32 Chapter 6. Changes

phpaga Documentation, Release 0.6-beta3

• Added Bar Chart highlighting to display exact monetary amount for each bar on Finances In-
voiced/Received/Missing chart. Also added option to Sitewide Settings to enable/disable highlighting.

• New billing plugin by Tim Esselens (Belgium VAT)

• Ticket #55: Allow an invoice’s payment date to be modified

• Ticket #72: PDF template sets

• Ticket #74: Show/hide the unbilled hours panel

6.3.2 Fixed

• Replaced _REQUEST with REQUEST_DATA that contains only _GET and _POST, addressing a problem
reported and analyzed by Jools Wills (cookie collision).

• Fixed bug making it possible to bill again already invoiced expenses.

• Ticket #42: Balance Due now calulated and displayed on invoices when payment has been made.

• phpaga.css: references missing sortable.gif; fixed path and added sortable.gif to htdocs/img/phpaga/

• Fixed bug causing paid invoices with due date in the past to be displayed with red due date text.

• A company’s financial information is no longer displayed if the user does not have the required permission

• Ticket #78: Handling of time in task entry inconsistent

• Ticket #59: Cannot delete expenses

• Ticket #57: Finance report chart: Wrong value for the “missing” bar

• Ticket #54: Do not allow project removal when related invoices exist

6.3.3 Other

• Documentation is now written in reStructuredText and built via Sphinx http://sphinx.pocoo.org/

6.4 phpaga 0.4

6.4.1 New or changed requirements

• UTF-8 locales

• PostgreSQL >= 7.4, MySQL >= 4.1.16

• PHP >= 5.2 is required with PDO and the PDO driver for PostgreSQL or MySQL

• eZ Components are required

• JpGraph is no longer used

• PEAR packages are no longer required - all dependencies from PEAR have been removed.

• The project timeline has been removed

• Picking a date is now handled by the “Unobtrusive Date-Picker Widgit” by frequency-decoder.com. (The
coolest DHTML calendar widget is no longer required.)

6.4. phpaga 0.4 33

http://sphinx.pocoo.org/

phpaga Documentation, Release 0.6-beta3

6.4.2 New features

• Simple recurring invoices. (Ticket #7)

• Improved databased abstraction, new error handling, HTML cleanup.

• Files can be uploaded and associated to persons. (The “foto” feature has been removed from person’s
details. A migration script is available at tools/migrate_personpictures.php.)

• UTF-8 support (read the relevant sections in the INSTALL file before upgrading your existing installation)

• An optional contact person has been added to invoices and quotations. (Ticket #34)

• An invoice due date has been added. (Ticket #35)

• When a quotation is turned into an invoice, the quotation number can optionally be used as invoice number.
(Ticket #30)

• It is no longer possible to store two invoices with the same number within the same year. (Ticket #31)

• Filed expenses can be added to an invoice (existing custom billing plugins need to be slightly changed).

• Jeremy from omnitechpro.com has submitted the following patches:

– Show materials amount on unbilled hours page

– Show invoice amount on invoice list page

– Add “unpaid” bar to finances graph

– Add invoice popup on Unbilled Hours screen

6.4.3 Updated translations

• Norwegian (Roger Bystrøm)

6.4.4 New billing method plugins

• Netherlands: nld_btw_hoog.php (Angelo Höngens)

6.4.5 Fixed

• Ticket #48: Letterhead layout problems with PDF documents in “letter” format.

• Ticket #25: With MySQL new projects would show up as blank under the unbilled hours page.

• Unbilled hours would show up on invoices.

• Fixed problems related to Javascript behaviour under various browsers.

6.5 phpaga 0.3a

6.5.1 Fixed

• Fixed a minor issue with the installer in 0.3 that could be triggered when trying to create the database on a
remote MySQL server.

34 Chapter 6. Changes

phpaga Documentation, Release 0.6-beta3

6.6 phpaga 0.3

6.6.1 New requirements

• PHP with gettext enabled

• smarty-gettext

• PEAR DB >= 1.7.6

• PEAR HTTP_Upload >= 0.9.1

• HTTP_Download >= 1.1.1

• HTTP_Header >= 1.2.0

• locales for desired supported languages

• Graphviz and PEAR IMAGE_Graphviz (optional, if you want to see project relationship graphs)

• Removed Overlib dependency, tooltips now shown with Walter Zorn’s DHTML JavaScript Tooltips library
(comes bundled with phpaga)

• If you are using MySQL then MySQL >= 4.1.15 is required

• 3rd party libraries are now moved to their own subdirectory ext/

6.6.2 New features

• A web interface for assisted database upgrade during phpaga upgrades has been added.

• First time “wizard” has been enhanced to create database structure and import core data.

• Added the possibility to assign default hourly rates per task type; per task type per project; per task type,
project and project member.

• Multiple invoices can be exported to a single PDF file.

• Invoices can be created from within a project page, and tracked material and tasks can be added.

• Quotations can be deleted as long as they are not tied to a project.

• Material can now be tracked per project.

• Product management added. Also, if a product with the product code of a new line item exists in the
database, the description and price are added automatically to the line item.

• Files can be uploaded and associated to projects.

• The day and month of the beginning of the fiscal year can be defined. All financial reports are now based
on the fiscal year.

• A default term of payment can be saved per company. This value can be fetched when creating an invoice.

• Let only users with the right permissions see all projects; other users see only projects they created or they
are a member of. This is both true for the projects search interface and for the projects timeline.

• Hide a project’s financial information (hourly rates, human cost) from “common” project members. Show
“common” project members their own expenses but nobody elses.

• Added the possibility to upload and assign a picture to a person.

• When a project is created from a quotation then add a reference to said quotation

• Added a simple system information and an application log viewer

• Added project priority (suggested by Mark Parssey)

• Search bills/quotations between two dates

6.6. phpaga 0.3 35

phpaga Documentation, Release 0.6-beta3

• Enable/disable installed billing plugins. Disabled plugins don’t show up in drop-downs when creating new
invoices/quotations

• Line items for invoices and quotations (conversion script for existing inv/quot)

• Search interfaces for persons and for companies (Mark Parssey)

• Only persons with a user account are shown when adding a new project member (Mark Parssey)

• Show project relationship graph (optional - Graphviz and PEAR Image_Graphviz required)

• Added a “summary overview” page

• An individual color can be specified for each operation category

• Persons: show projects person is owner or member of

• List summary overview of unbilled hours per customer and project; create invoice from unbilled hours

• Projects search interface; print project list to PDF (Mark Parssey)

• Projects: Added deadline (Mark Parssey)

• Projects: Added estimated manhours, estimated cost manhours, estimated cost material, parent project,
billable status

• Get persons’s default job category when adding a project member (Mark Parssey)

• Default hourly rate per person (this rate is suggested when adding a new project member)

• First time setup “wizard” (to create first user and person via web)

• Permission system

• All user submitted data is escaped/quoted by PEAR DB’s methods before being stored in the database

• When selecting a language it is first checked whether the required locale is installed

• Second address field added to companies and persons

• Delete users

• Added task category matrix/graph to company page

• A list of invoices and the billing summary is shown on a company’s details page

• Added a detailed overview to the project page that shows the sum of time per task category per person in a
matrix

• Delete companies

• Billing method plugin installer/uninstaller

• Delete invoices that have not been paid yet

• Translations handled by gettext

• New billing method plugin by Daniel Cabezas

• Main page: show only projects the current user created or is a member of

• Limit number of characters shown for project title and task category title in task lists

6.6.3 New billing method plugins

• Spain: esp_liberoprof_euro.php (Daniel Cabezas)

• Canada: cdn_gstpst.php (Ken)

• USA: usa_sales.php (Arif Hamirani)

• Germany: de_mwst.php (Jens Bierkandt)

36 Chapter 6. Changes

phpaga Documentation, Release 0.6-beta3

6.6.4 New translations

• Norwegian (Sverre Farstad)

• French (Benoit Nicolas)

6.6.5 Fixed

• Include JpGraph libraries only when actually creating a graph

• When changing a task, the task is no longer “taken over” by the changing user

• Thousands and decimal separator settings were not respected on the financial overview page

• New invoice/quotation numers greater that 10 would not be calculated correctly

6.7 phpaga 0.2

6.7.1 New features

• Create an invoice from a quotation

• Clone operations and invoices

• Added “average weekly work hours” line in weekly manhours graph

• Separated pdf layout (templates) from library, making it easier to personalize the pdf output

• Additional task search parameters (sponsored request)

• Added a detailed overview to the person page that shows the sum of time per task category per project in a
matrix

• Added a field to projects that can contain the company that issues the invoice (sponsored request)

• Changed various text links to icons (using gnome icons from http://jimmac.musichall.cz/ikony.php3)

• Added a billing plugin (sales of goods) written by Alessio Bogani

• Added basic expense tracking per project (i.e. travel, hotel, meals)

• Allow multiline input for company location in the letterhead (patch by Robert Paskowitz)

• New web-based configuration system

• Added robots.txt (to prevent spiders from indexing phpaga sites)

• Added combined financial graph

• Added contrib/ for contributed stuff. Moved contributed style sheet(s) to contrib/

• Give detailed information when unable to connect to the database when PHPAGA_ERR_VERBOSE is
defined and true

• Added a turnover history graph

• Added human costs calculation for invoices and project information. The necessary information is taken
from the project memberships table (hourly rates field).

• When adding a task, administrators can now file hours for other users, not just themselves

6.7. phpaga 0.2 37

http://jimmac.musichall.cz/ikony.php3

phpaga Documentation, Release 0.6-beta3

6.7.2 New translations

• Danish (Per Christiansen)

• Hungarian (Fehér János)

• Russian (Dmitry Stroganov)

• Spanish (Daniel Cabezas)

6.7.3 Fixed

• Gantt chart (project timeline) shows cleanly, projects bars are linked to projects

• Various code, templates and stylesheets cleanups; interface improvements

• Email address check did not allow upper case letters

• Moved more display logic into the Smarty templates

• Fixed a bug regarding the handling of timestamps in PostgreSQL

38 Chapter 6. Changes

CHAPTER

SEVEN

APPENDIX

7.1 Bugs

Feel free to drop a message to the phpaga-users mailing list to report bugs.

7.2 Contact

Comments, questions and praise are welcome on the mailing list.

39

https://lists.phpaga.net/listinfo/phpaga-users
https://lists.phpaga.net/listinfo/phpaga-users

	Installation
	Requirements
	Installation
	Configuration
	Development version

	Upgrade
	In general
	Upgrading from 0.5.2 to 0.6
	Upgrading from 0.5.1 to 0.5.2
	Upgrading from 0.5 to 0.5.1
	Upgrading from 0.4 to 0.5
	Upgrading from 0.3 to 0.4
	Upgrading from 0.2 to 0.3
	Upgrading from 0.2rc1 to 0.2
	Upgrading from earlier versions

	PDF customization
	Invoices
	Quotations
	Sitewide settings

	Billing plugins
	Mini HOWTO
	Sample implementation

	Getting Started Guide
	Introduction
	Features
	Quickstart
	Understanding the workflow
	Understanding the reports
	Settings and customizing
	Miscellaneous items

	Changes
	phpaga dev
	phpaga 0.5.1
	phpaga 0.5
	phpaga 0.4
	phpaga 0.3a
	phpaga 0.3
	phpaga 0.2

	Appendix
	Bugs
	Contact

